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Abstract

Samarth MEHROTRA (2015A7TS0062G)

Why are people essentialists?

A Computational Investigation

Essentialism is the view that certain categories have an underlying reality

or true nature that cannot be observed directly. A number of developmen-

tal studies in psychology have shown that people, especially young children,

are essentialists. However, the question of why people are essentialists has

remained unanswered. In this thesis, we try to answer this question by ex-

ploring two possibilities using a computational approach. First, we try to

answer the question whether perceptual features for natural kinds support

the inference of a hidden causal variable. We compare the likelihood of vari-

ous causal structures to answer this question. Second, we study the role that

language plays in the development of essentialist beliefs in children. We im-

plement a classifier for the automated identification of generic noun phrases

and use this to study how the frequency of generic noun phrases varies across

lexical categories. Our analysis indicates that the environment offers percep-

tual and linguistic input for people to develop essentialist beliefs. However,

the input is available for both natural and artefact categories and fails to ex-

plain why people develop essentialist beliefs only for natural kinds.

Keywords: Psychological Essentialism, Bayesian Networks, Generic Noun

Phrases
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Chapter 1

Introduction

1.1 What is Essentialism?

According to Gelman (2003), essentialism is the idea that certain natural and

social categories have an underlying reality which might not be observed di-

rectly. An essence is a hidden, unobservable property of a category which is

responsible for various surface features. For example, the essence of a lion

causes it to have a mane, four legs, an ability to roar, etc. Biologically, the

essence could be attributed to the DNA of a living organism. In chemistry,

properties of water (odourless, colourless, etc.) can be attributed to it’s chem-

ical composition i.e. H2O. Medin and Ortony (1989) further claim that essen-

tialism is a placeholder concept. Adults do not necessarily know what the

essence is, however, they believe that certain categories have an underlying

reality.

In this thesis we try to answer the question: why are people essentialists?

We study whether perceptual features of essential categories support the in-

ference of hidden causes. We also study the role that language plays in the

development of essentialist beliefs.

We begin by presenting a summary of studies which suggest that people are

essentialists.
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1.2 Evidence of essentialist beliefs in children

The existence of these essences in the real world is a philosophical ques-

tion, often termed as metaphysical essentialism. However, the question of

whether these essences are present in people’s representations of categories

is a psychological question called psychological essentialism. Medin and

Ortony (1989) suggest that psychological essentialism is the psychologically

plausible analog of the implausible theory of metaphysical essentialism. Gel-

man (2003) refers to this idea that people’s representation of objects reflect the

belief of an essence as representational essentialism.

Given that essentialism is a placeholder concept and people might not know

what the internal essence exactly is, direct evidence that people are essential-

ists is difficult to obtain (Gelman, 2003). Gelman (2003) argues that the ex-

istence of essences would imply that people’s categories are structured and

have an inductive potential, extend beyond surface features, include non-

obvious properties and hidden causal features which are stable over phys-

ical transformations. In this thesis, we try to answer why representations

of essentialised categories consists of hidden causal features and allow for

category based inferences. For now, we present evidence which shows that

people’s categories and conceptual representations show all the properties

listed above.

For instance, Gelman and Wellman (1991) conducted a series of experiments

to test children’s understanding of features beyond the surface level. Chil-

dren by three years of age were able to distinguish between internal (eg.

bones, blood) and surface (eg. skin) features. Although children’s responses

were often inaccurate or uninformative (lemons have lemony stuff inside,

stuffed dogs have blood inside but no bones), they were able differentiate
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between inside and outside. Children of age four considered internal and in-

trinsic features to be important for an object’s identity and functioning (Gel-

man and Wellman, 1991). Further, children showed the belief that members

of a category share certain intrinsic properties which are unaffected by the

environment in which the object is brought up in. They anticipated that cer-

tain physical properties will develop irrespective of the environment.

In addition to the evidence showing that children infer an underlying struc-

ture with various categories, there is evidence that children’s categories have

a strong inductive potential. For instance, Gelman and Markman (1986) con-

ducted an experiment to test children’s ability to make inferences. Children

were shown an image of a dolphin and told that the dolphin pops out of

water to breathe. Children were able to infer that a second dolphin would

also pop out to breathe, indicating that children can make simple inferences.

The experiment further tested on what basis were children making these in-

ferences. Children were shown an image of a tropical fish, told that it was a

fish and that it breathes underwater. They were then shown an image of a

dolphin, told that it was a dolphin and that it pops out of water to breathe.

Children had to decide how a third fish (they were told it was a fish) which

looked like a dolphin, breathes. Children of age four based their inferences

on common category membership even when there was conflicting percep-

tual evidence available to them. Another finding of the set of experiments

was that children did not base all their inductions on category membership

and were able to differentiate between properties which can be projected

based on category membership and those which rely on perceptual features.

These results suggest that children are able to make inferences based on cat-

egory membership.

There is evidence which suggests that children differentiate between natu-

ral kinds and artefacts and develop the notion of an essence only for natural
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kinds. For instance, children of age five were able to recognize that an animal

cannot be transformed into another animal. For example, a raccoon cannot

be transformed into a skunk (Keil, 1989). Children were shown before and

after images in which a raccoon was transformed into a skunk through some

physical changes. Deceptive features (for example, ’smelly stuff’ associated

with skunks) were also included in the pictures. Children claimed that the

transformed animal was still a raccoon. However, children were able to rec-

ognize that artefacts can change their identity through transformation. For

example, a coffee-pot can be transformed into a bird feeder but a lion cannot

be transformed into a tiger (Keil, 1989).

Gelman (1998) was able to demonstrate that as children grow older (from pre-

school to second grade) they draw more inferences within natural kinds (eg.

carrots) than within artifacts (eg. balls). In very young children, inferences

were based usually on generalizability of the property, where as older chil-

dren took domain specific information into account. Gelman (1998) suggests

that children were able to make more inferences for the natural kinds be-

cause children perceived the categories as more homogeneous as compared

to artefact categories.

In this thesis, we are concerned with the causal aspect of essentialism. We ex-

amine whether perceptual features support the inference of a hidden cause,

which might be the essence. The next section provides evidence that people

do in fact infer hidden causes and causes are important in categorization and

representation.
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1.3 Causality in Categorization, Explanations and

Essentialism

Causes are central to people’s representations of categories. The causal sta-

tus effect (Ahn et al., 2000) states that the position of a feature in a causal

structure determines its centrality in representation and categorization. For

example, Fish DNA is more important than ’having gills’ since Fish DNA

is the cause for the feature ’having gills’. In a category membership task,

removal of a causal feature lowered category membership likelihood more

than the removal of effect features. In free sorting tasks, people preferred to

create categories which shared a common cause instead of a common effect.

Further, goodness of exemplar judgements were affected by the presence of

causally central features - deeper the missing cause, worse was the rating of

the exemplar (Ahn et al., 2000).

A number of experiments show that even young children are able to iden-

tify causal features and that this information influences categorization and

induction. Gopnik and Sobel (2000) were able to demonstrate that by two-

and-a-half years of age, children use causal information to guide categoriza-

tion and induction. Children were shown an object called ’blicket’ which

turned a machine off. In the categorization task, children were shown other

objects, some of which could turn the machine off and some of which could

not. Children had to label which objects were ’blickets’. In the induction

task, children were shown objects, a few of which were labelled as ’blickets’.

Children had to predict whether the object had the causal power to turn off

the machine. Children were effectively able to use causal information even if

there was conflicting perceptual information involved.

Gelman and Kremer (1991) studied causal explanations given by children for

various properties of categories. Specifically, they studied whether children
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recognize that causes can be inborn and internal. Children were shown a

picture of a category (for example, a rabbit) and were told a particular prop-

erty (for example, a rabbit has long ears) or behaviour (for example, a rabbit

hops) which was relevant to the image. They were then asked a reason for

the property/behaviour (Why does the Rabbit have long ears?) and were

given two options: ’Did a person make long ears?’ or ’Is there anything in-

side that made long ears?’. The list of behaviours were from two classes (as

rated by adults): self-generated/self-sustained and other-generated/other-

sustained. Children showed the belief that self-generated activities are more

likely to have an inherent cause. Children as young as four realized that

natural causes exist apart from human causes. Children were also able to

identify different types of natural causes: inborn, intrinsic or growth.

Gelman (2003) introduces the concept of a causal essence: an entity which

causes other category typical features. For example, the Y-chromosome is

possibly the essence which is responsible for various surface features of men

(moustache, beard, etc.), i.e. the Y-chromosome is a common causal variable

which is responsible for a number of observable properties. People’s repre-

sentations of categories consist of a causal essence even if they are unaware

of what the actual essence is (or even if an actual essence does not exist), i.e

the causal essence is a placeholder.

Causal, representational essentialism suggests that people’s representations

of categories consist of a causal variable (the essence) which is responsible

for various surface features. According to essentialist theories, the essence

should be causally responsible for a number of properties rather than the

essence being an effect or outcome of the properties. As Medin and Ortony

(1989) suggest, twins are not twins because they are similar but rather they

are similar because they are twins. This would imply that people’s repre-

sentations of categories should support the common-cause structure (Figure
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1.1) over the common-effect structure (Figure 1.2), at least for the categories

which tend to be essentialised. Ahn et al. (2001) suggest that people’s rep-

resentations of natural categories consist of a common cause structure. Keil

(1989) suggests that the common effect structure is the underlying structure

for artefact categories. Keil (1989) further suggests that natural kinds consists

of richer and denser clusters of features as compared to artifact categories. In

Chapter 3, we compare causal structures across categories. We also compare

the correlation between pairs of features to understand if natural kinds have

a larger number of highly correlated features.

FIGURE 1.1: Common Cause

FIGURE 1.2: Common Effect
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1.4 Why are people Essentialists?

Essentialist theories claim that people tend to develop the notion of causal,

representational essentialism for natural categories (tigers, man etc.) and so-

cial categories (race, ethnicity etc.) but not artefact categories (Gelman, 2003).

So far we have presented evidence which suggests that people are essential-

ists and can infer hidden causes. However, what has remained unanswered

is why are people essentialist.

One possible reason is that essentialism is an inherent cognitive bias. It is

possible that children, from birth, are biased towards thinking about natu-

ral kinds in an essentialist sense. Other possibilities are that essentialism is

learned from the structure of the perceptual or linguistic environment, or

that both the environment and innate biases play a role in the development

of essentialist beliefs.

One kind of environmental input that might be relevant is the structure of

the categories in the real world. What kind of features do objects have and

do those features support the inference of a hidden cause. In this thesis we

explore this possibility by comparing the likelihood of different causal struc-

tures.

Another possibility is that language plays a role in the development and

strengthening of essentialist beliefs. A generic noun phrase1 is a linguistic

form which is used to express essential qualities about a category. Further,

generics convey that a category is stable, structured and allows for category

based inferences. Gelman and Tardif (1998) and Gelman et al. (2008) show

that generic speech in child-directed speech is domain-specific and generic

phrases are used more frequently while referring to animals and natural

1Generic noun phrases refer to categories or classes of objects rather than an individual
object of a particular class; Example: Dogs eat meat. (generic); My dog does not eat meat
(non-generic)
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kinds. It is possible that adults are producing a larger number of generic

phrases for animal categories because they themselves think of these cate-

gories in an essential sense. However, children develop essentialist beliefs

even in the absence of generic speech. This potentially implies that generic

noun phrases are not necessarily the only reason for the development of es-

sentialist beliefs but help in the strengthening of inherent cognitive biases.

The results of the study conducted by Gelman et al.(2008) are based on man-

ually tagging generics in eight corpora from the CHILDES dataset. Their

results suggest that child-directed speech is domain specific and biased to-

wards animal categories. However, their results are based on a small dataset.

In this thesis, we extend the original study conducted by Gelman et al (2008)

to a larger corpus of child speech by developing an automated system for the

identification of generic noun phrases.

1.5 Aim and Hypothesis

The aim of this thesis is to study why people develop the notion of a causal

essence for natural kinds. We examine whether the visual and perceptual

features of a category support the inference of a common cause. Since people

tend to have stronger essentialist beliefs for natural categories as compared

to artefact categories, we expect a greater number of animal categories to

support the common cause structure as compared to artefact categories. Fur-

ther, we study the role that generic noun-phrases play in the development

of essentialist beliefs. We develop a computational framework to extend the

initial study conducted by Gelman et al.(2008) on the CHILDES dataset. Our

goal is to test the hypothesis that both children and adults produce a larger

number of generic statements for natural categories as compared to artefact

categories.
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The rest of the thesis is broken up into two parts. In Part 1 we collect a dataset

of perceptual features and compare causal structures across categories. In

Part 2, we study the role of generic noun phrases in the development of es-

sentialist beliefs.
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Part 1
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Chapter 2

Part 1: Methodology and

Experiment

The goal of the first part of the thesis is to study whether perceptual fea-

tures are responsible for latent causal variables in people’s representations

of categories. In order to do so, we collect a dataset of perceptual features

and compare the likelihood of various causal structures. We first provide

an introduction to Bayesian Networks and Causal Graphical Models, follow-

ing which we describe the experiment which was conducted to collect the

dataset. We compare the causal structures based on their likelihood in Chap-

ter 3.

2.1 Bayesian Networks

The study relies on the use of Bayesian Networks to capture the causal struc-

tures present in people’s representations. A Bayesian Network is a directed

acyclic graph (DAG) which represents the joint probability distribution of a

set of variables. Bayesian Networks consists of two parts: (a) the structure

of the graph, i.e. nodes and directed edges and (b) conditional probability

tables associated with every node (a conditional probability table specifies
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FIGURE 2.1: Bayesian Network
A Bayesian Network consisting of three variables. Each node has a corresponding
conditional probability table.

the probability of each value of a variable X given each possible combination

of values of the Parent Variables of X). Together, the graph and set of condi-

tional probability tables represent the joint probability distribution of the set

of variables:

P(X1, X2, X3...Xn) =
n

∏
i=1

P(Xi|Parents(Xi)))

Figure 2.1 is an example of a Bayesian Network of three binary variables:

has_ f our_legs, has_a_mane, is_a_lion.

A Causal Bayesian Network is a Bayesian Network where the parents of each

vertex are it’s direct causes. Learning the structure of a causal bayesian net-

work from observed data, comprises of learning: (a) Structure Learning: the

structure of the directed acyclic graph and (b) Parameter Learning: the con-

ditional probability tables associated with every node.
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has_a_mane is_a_lion
0 0
1 0
1 1
0 0
0 1
0 1
0 0
1 1
0 0
1 1

TABLE 2.1: Binary Data
Data for two binary variables. We use similar data to estimate causal structures.

2.1.1 Parameter Learning

If we consider the case of only binary variables, each entry of the conditional

probability table is equivalent to estimating the probability of a biased coin.

Estimating all the parameters of the network is equivalent to estimating the

probability of multiple biased coins.

Consider the Bayesian Network shown in Figure 2.2 and the observed data

shown in Table 2.1. Estimating the parameters for each cell of the conditional

probability table is like estimating the probability of getting a head when a

biased coin is tossed. The maximum likelihood estimate of the probability of

a head is: Number of Heads in observed data/ Total number of tosses. There-

fore for the cell A1, the Maximum Likelihood Estimate is 4/10. Similarly, the

estimates for cell B1 and B2 are 3/4 and 2/6, respectively.

Parameter estimates can also be made by using the Maximum Aposteriori

approach, i.e. a prior probability is multiplied with the maximum likelihood

estimate. The conjugate prior for a binomial distribution is a beta-prior. If

the variables (discrete) are not binary variables, the probability estimates are

equivalent to estimating the probability of the sides of a dice (multinomial

distribution) and the conjugate priors come from the Dirichlet family. In
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FIGURE 2.2: Bayesian Network
Estimating the conditional probability tables from data for a given graph structure.

Chapter 3, we use a dataset of binary variables and maximum likelihood

estimates for parameter estimation.

2.1.2 Structure Learning

There are two broad categories of algorithms for learning the structure of the

Bayesian Network.

Score-Based Learning Algorithms

In score-based methods, a score is assigned to each candidate Bayesian Net-

work. For a given graph G and observed data D, the score is calculated as:

P(G|D) i.e. the posterior probability of the graph given data. By Bayes’ the-

orem:

P(G|D) = P(D|G)∗P(G)
P(D)

,

where P(D|G) =
n

∏
i=1

qi

∏
j=1

Γ(aij, bij, sij, tij).1 P(G) is a prior distribution over var-

ious graph structures. The Bayesian Information Criterion (BIC) (Schawarz,

1

• qi is the number of different combinations of values of parents of variable Xi

• aij and bij are the priors on heads and tails, respectively, of Xi when parents of Xi take
their jth instantiation

• sij and tij are the observed number of heads and tails, respectively, of Xi when parents
of Xi take their jth instantiation

• Γ((aij, bij, sij, tij)) =
Γ(aij+sij,bij+tij)

Γ((aij,bij)
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1978), is a score-based method which uses a prior to penalize complex struc-

tures. BICScore = log(P(D|G)) − d∗log(N)
2 , where N is the size of the data

set and d is the number of parameters of the structure. Scoring all possi-

ble Bayesian Networks is at least exponential in the number of variables. A

number of heuristic/greedy methods exist to search the space of bayesian

networks. The K2-algorithm (Cooper and Herskovits, 1992) is an example of

a greedy search over the space of Directed Acyclic Graphs.

Constraint-Based Methods

Constraint-based methods use data to estimate whether certain conditional

independencies between variables hold. Common constraint-based tests are

the Mutual Information test when dealing with binary variables and the t-test

for correlation when dealing with Gaussian variables. Given a set of condi-

tional independencies in a probability distribution, constraint-based learning

algorithms try to find an equivalence class of Directed Acyclic Graphs for

which the Markov condition entails those conditional independencies (mul-

tiple DAGs might be compatible with the conditional independence tests). A

Parental Ancestral Graph is a graphical structure which represents the fea-

tures common to all the DAGs.

The PC algorithm (Spirites et al., 1993) is an example of a constraint-based

algorithm which follows the causal sufficiency assumptions, i.e. there are

no latent or selection variables. The PC algorithm finds the Markov equiv-

alent class of DAGs using the conditional independence tests and creates a

Parental Ancestral Graph. The parental ancestral graph has two types of ar-

rows: A → B and A− B. The directed edge means that the edge is present

in all DAGs of the Markov equivalent class. The undirected edge means that

there is at least one DAG in the equivalence class having the edge A → B

and at least one DAG with the edge B→ A.
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The Fast Causal Inference algorithm (Spirtes et al., 2000) is a generalization

of the PC algorithm that allows for arbitrary number of latent and selection

variables. Parental ancestral graphs learnt using the FCI algorithm have the

following types of edges: ◦ − ◦, ◦ −→,←→,−→,−. Bi-directed edges are

from hidden variables and undirected edges are from selection variables. A

tail on an edge means that the tail is present in all DAGs of the Markov equiv-

alence class. Similarly, an arrowhead on an edge means that this arrowhead

is present in all graphs in the Markov equivalence class. A ◦- edge mark

means that there is at least one graph in the Markov equivalence class where

the edge mark is a tail and at least one where the edge mark is an arrowhead.

The bi-directed edge (A ←→ B) means that there is a latent causal variable

between observed variables, A and B.

The Really Fast Causal Inference (RFCI) algorithm (Colombo et al., 2012) is a

modern and faster implementation of the original FCI algorithm.

Most constraint-based learning algorithms follow a three-step procedure to

estimate the set equivalence class of DAGs and the final Parental Ancestral

Graph. In the first phase, the Markov blanket associated with each node

is learnt to reduce the number of potential directed acyclic graphs. In the

second phase, a skeleton of the directed acyclic graph is learnt. For each

node, it’s neighbours are identified, i.e. parents and children are identified

but the arcs are still undirected. In the third phase, directions of arcs are

identified.

Hybrid Algorithms

Hybrid algorithms use a combination of conditional independence tests and

scoring over various graph structures. The Max-Min hill climbing algorithm

(Tsamardinos et al., 2006) is an example of a Hybrid algorithm. The Max-

Min hill climbing algorithm uses the conditional independence tests to find

a skeleton of the graph and then performs a greedy search to find the exact
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orientation of the edges.

In this thesis, we use the Really Fast Causal Inference algorithm to identify

if there are latent variables present in people’s representations of categories.

We use the Max-Min hill climbing algorithm to find the best-fit graph, and

we compare specific graph structures (common cause, common effect, etc.)

based on their likelihood.

2.2 Overview

Our methodology to examine causal structures in representations of cate-

gories followed a two step procedure. The first involved collecting a dataset

of perceptual features associated with psychological/mental representations

of various categories. We collected data for animal and artefact categories,

since we expect animal categories to be essentialised and artefact categories

to be non-essentialised. The second step involved the use of Bayesian Net-

works to compare the inferred causal structures for each of the categories.

In sections 2.3 and 2.4 we describe the experiments which were used for data

collection. We analyse the data in Chapter 3.

2.3 Experiment 1

A core part of conceptual representation depends on the features associated

with a particular concept. For example, cats are associated with features such

as ’meows’, ’has four legs’, ’is furry’, etc. (Kiefer et al., 2011). Semantic prop-

erty norms have been used to capture the features associated with represen-

tation of concepts and to explore aspects of semantic property representation

(Devereux et al., 2014).
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In property norm studies, participants are asked to list features that they as-

sociate with a particular concept. People are presented with a concept (for

example, the word ’zebra’) and are asked to list features that they associate

with the concept. We conducted a variant of standard property norm/feature

listing studies to capture features associated with representations of concepts

based on visual stimulus. To compare causal structures within a category, we

needed a dataset of features for multiple examples of a category. For exam-

ple, we wanted multiple images of zebras and corresponding features for

each of those images, as opposed to a single list of features for the concept

zebra. The study allows us to capture features for individual exemplars of a

category and learn a causal structure based on this data.

In experiment 1, participants were shown different images for each cate-

gory/concept and were asked to rate the applicability of certain features.

These features were chosen from standard property norm data sets. For ex-

ample, the participant was shown an image of a lion and corresponding fea-

tures would be ‘has a mane’, ‘can roar’, ‘has a tail’, etc. Participants of the

study were expected to rate the applicability of each feature on a scale of 1

to 7 (1: the feature is not relevant to the image/category and 7: the image is

highly relevant to the image/category). This dataset of ratings was used to

compare the likelihood of different causal structures.

2.3.1 Design

Choice of Categories/Concepts

In order to ensure a wide variety of concepts were included, natural cate-

gories comprised of mammals, birds, fish and reptiles. Similarly, artifact cat-

egories comprised of furniture, utilities, musical instruments and vehicles. 18

categories, comprising of 9 natural kinds and 9 artefact concepts were identi-

fied. The choice of categories was such that the concepts existed in standard
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property norm data sets (McRae et al., 2005 and Devereux et al., 2014) and

the category was part of the 1000 categories used in the ImageNet challenge

(Deng et al., 2009). The categories were:

• Natural: ANT, PIG, PEACOCK, SNAIL, GORILLA, FLAMINGO, IGUANA,

LION, GOLDFISH

• Artefacts: BALLOON, BUCKET, CANDLE, DESK, FLUTE, MICROWAVE,

NECKLACE, TAXI, UMBRELLA

Features

Features associated with each category were chosen from two property norm

data sets: McRae et al., 2005 and Devereux et al., 2014. Eight features were

selected from each category using the two studies. To ensure a systematic

selection of these eight features for each category, the highest weighted fea-

tures2 which were common between the two property norm studies were

selected first. If the requirement of eight features was not satisfied, the high-

est weighted features from the remaining set were chosen. The set of fea-

tures was restricted to perceptual features and features based on category

hierarchy such as ’is a bird’ were excluded. The final set of features for each

category can be found in Appendix A.

For two categories: LION and TAXI, an additional feature which played the

role of an attention check was displayed. This feature was ‘is an animal’ for

LION and ‘is a vehicle’ for TAXI. Data collected from participants who rated

either of the features lesser than 5 (on a scale from 1 to 7) was excluded in the

analysis.3

Choice of images

120 images were chosen for each category from the ImageNet dataset (Deng

2Weight in a property norm study is the number of people who listed the feature.
3Data for one participant was not included because of a score less than 5 on the attention

check features
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et al., 2009).4 To ensure that images spanned a range of category typical-

ity/representativeness, but at the same time typicality was uniform across

categories, we followed the following procedure:

• Every image available on ImageNet of a particular category was passed

through the pretrained GoogleNet model (Szegedy et al., 2015) and the

final softmax layer value for the class was stored.

• For every category, a random sample of 20 images was selected from

the set of images which had a softmax value in the range 0.8-1. A ran-

dom sample of five images was selected from the range 0.6-0.8 and an-

other random sample of five images was selected from the range 0.4-

0.6. (The softmax layer of deep neural networks can accurately predict

category typicality ratings for images (Lake et al., 2015).)

The average category typicality of images used for each category can be

found in Appendix A.

2.3.2 Participants

366 participants (187 Males, 173 Females, 6 Others) were recruited using

Amazon Mechanical Turk. Age of the participants ranged from 18 to 72 years,

with a mean age of 38.4 years. Mechanical Turk is an online market which

offers a diverse and large subject pool for conducting experiments known

as Human Intelligence Tasks (Mason and Suri, 2011). Recruiting 366 partic-

ipants ensured that we were able to get approximately 3 people to rate each

image to perform a smoothing/averaging step.

4We wanted a dataset which consists of 120 positive examples and approximately 50
negative examples. Collection of negative examples has been discussed in Experiment 2.
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2.3.3 Procedure

The study was conducted online using Amazon Mechanical Turk’s Human

Intelligence Tasks.5 Participants were first shown a set of instructions and

were quizzed on their understanding of the questions. They were allowed to

proceed only if they answered all the questions correctly.

In the experiment, each participant was shown a sequence of 18 images - one

for each category. Along with each image, 8 corresponding features were

displayed. Participants were expected to rate on a scale from 1 to 7, the ap-

plicability of a particular feature to the image (7 indicated that the feature

was highly relevant and 1 indicated that the feature was not relevant to the

image). For example, a participant was shown the image of a snail (Figure

2.3) and the corresponding features were leaves a trail, is found in gardens,

is slimy etc. The order of the categories and the order of the features within

each category was random for each participant.

Henceforth, this data set has been referred to as Dataset 1. Experiment 1 al-

lowed us to capture people’s ratings of features for a category along the rele-

vant dimensions. For example, the features for taxi were is_black, has_a_meter,

etc. To capture people’s ratings of images along non-relevant dimensions, we

conducted an additional experiment.

2.4 Experiment 2

Data collected using Experiment 1, allowed us to collect applicability rat-

ings for various features for 120 images of each category. In order to capture

people’s ratings of features which might not be relevant to the category, a

variant of the experiment was conducted. This was done so that we could

5The study can be accessed at: featurescoring.appspot.com. Code for the experiment was
written in JavaScript and can be accessed at: github.com/samarth1397.
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FIGURE 2.3: Experiment 1 Task

Participants saw an image and a list of eight features as shown in the image. Features
were from the property norm studies conducted by Mcrae et al. (2005) and Devereux
et al. (2014). Participants were expected to rate the applicability of each feature on a
scale of 1 to 7.
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learn a causal structure using both positive and negative examples which

have been rated along the same set of features. The difference was that par-

ticipants were not shown 8 features corresponding to the category. Instead,

participants were shown a random sample of 8 features from the pool of fea-

tures of other categories. For example, a participant was shown the image of

a lion and the corresponding features were: ’leaves a trail’, ’has a shell’, ’eats

bananas’, ’is large’, etc.

2.4.1 Design

The 3 most representative images of each category , i.e. the images which had

the highest softmax scores out of all the images in ImageNet for the particular

category, were selected. Eight features were sampled randomly from the pool

of features and were displayed along with the image.

For five categories: LION, TAXI, CANDLE, ANT and FLUTE, an additional fea-

ture which played the role of an attention check was displayed. Data col-

lected from participants who rated either of the features lesser than 5 (on a

scale from 1 to 7) was excluded in the analysis.6

2.4.2 Participants

141 participants (86 Males, 54 Females, 1 Other) were recruited using Ama-

zon Mechanical Turk. This number ensured that every feature was rated

by approximately 3 people for a particular image. Age of the participants

ranged from 24 to 75, with a mean age of 38.6 years.

6None of the participants rated any of the features lesser than 5 and so no data was dis-
carded.
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FIGURE 2.4: Example Image

Participants saw an image and a list of eight features from a pool of features for other
categories (Two features have been shown in this image.). This experiment allowed
us to collect a data set where examples from categories were rated on a set of features
from different categories. We merge Dataset 1 and Dataset 2 into Dataset 3, which
we use to compare the likelihood of different causal structures.

2.4.3 Procedure

The experiment setup was similar to Experiment 1 and was conducted online

using Amazon Mechanical Turk’s Human Intelligence Tasks7.

Similar to experiment 1, each participant was shown a sequence of 18 images

and rated applicability for the corresponding features. Figure 2.4 shows an

example of an image and a list of features which the participant saw. Hence-

forth, data collected from this experiment has been referred to as Dataset 2.

7The study can be accessed at: otherfeaturescoring.appspot.com. Code for the experi-
ment was written in JavaScript and can be accessed at: github.com/samarth1397.
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In the next chapter we use Dataset 1 and Dataset 2 to compare various causal

structures which are best supported by the data.
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Chapter 3

Part 1: Analysis

In this chapter, we analyse the data collected from the two experiments. We

compare various causal graphical models to understand which models are

supported by the data and whether the data supports the inference of hid-

den causal variables. In the rest of this chapter, we use the words essential

and animal interchangeably. Similarly, we use the words non-essential and

artefact interchangeably.

3.1 Data

Dataset 1 and Dataset 2 were merged to create Dataset 3. Dataset 3 consisted

of 171 images and ratings of features for each category. 120 of those images

were from Dataset 1. The remaining 51 images and ratings were from Dataset

2. For example, for the category GORILLA, the data consisted of 120 images

(from Dataset 1) which were actually images of gorillas (positive examples)

and 51 images of other categories (from Dataset 2 - negative examples) and

the corresponding ratings for features of the concept Gorilla (from Experi-

ment 2). The data for gorilla, for example, is shown in Table 3.1:
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image eats bananas is black is dangerous has fur/hair is large
gorilla-1 7 7 7 2 2
gorilla-2 7 7 4 6 7
gorilla-3 4 7 4 6 3
gorilla-4 4 6 4 7 5
gorilla-5 5 6 4 5 7
gorilla-6 5 7 4 5 7

..... .... .... .... .... ....
lion-1 1 1 4 5 7
lion-2 1 1 6 2 4
lion-3 1 1 7 7 3

goldfish-1 1 1 4 4 4
..... .... ..... .... .... ....

TABLE 3.1: Data for gorilla (example)
Data for a category consists of positive and negative examples which have been
rated on a list of eight features. Positive examples and ratings were from Experiment
1 and negative examples and ratings were from Experiment 2.

To get a sense of how features within a category might be related, we cal-

culated the correlation1 between feature pairs. Figure 3.1 shows the average

correlation between pairs of features for each category, along with the distri-

bution of correlations within a category. We find that the average pairwise

correlation for essential categories is 0.66 which is higher than the average

pairwise correlation for non-essential categories (0.57). However, in both

groups there are bundles of features with high correlation (>0.8). Individ-

ual heat maps of correlation between features for each category can be found

in Appendix B. This difference in correlation between pairs of features for

essential and non-essential categories served as motivation to analyse the

causal structures across categories.

We used Dataset 3 to compare the likelihood scores of different causal struc-

tures. Two different strategies were used to analyse the causal structures

which are best supported by the data. In the first approach, we introduced a

variable which plays the role of an ideal causal essence which is shared by all

members of a category. In the second, we use the Really Fast Causal Inference

1Correlation was calculated using the Kendall Rank Correlation Coefficient.



Chapter 3. Part 1: Analysis 29

FIGURE 3.1: Average Pairwise Correlations
Correlation between pairs of features of a category. The smaller dots indicate cor-
relation for each pair and the larger marker indicates the average of all pairs. This
analysis was useful in understanding if natural categories consist of pairs of highly
correlated features. We find that for both artefacts and animals, there are pairs of
highly correlated features, although, the average correlation for animal categories is
slightly higher.

algorithm to identify if hidden causes are present between pairs of variables.

These two strategies are discussed in detail in the next two sections.

3.2 Explicitly defining the essence variable

A binary variable which served as a dummy variable for the ideal causal

essence was defined for each category. As described above, Dataset 3 com-

prises of 171 images for each category. The essence variable was set to 1 for

all images which were actually members of the category, i.e. 120 images,

and was set to 0 for all images which are not members of the category, i.e.

51 images. Using this data, the likelihood of the common cause structure
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was compared against the common-effect structure and the independent fea-

tures and essence structure. In the rest of this chapter, common cause refers

to the causal structure shown in Figure 3.2. Similarly, common effect refers

to the structure shown in Figure 3.3 and independent refers to the structure

shown in Figure 3.4. Best-fit refers to the best-fit Bayesian Network as re-

turned by the Max-Min Hill Climbing algorithm. Best-fit-independent refers

to the best-fit Bayesian Network as returned by the Max-Min Hill Climbing

algorithm, with the constraint that the essence variable is independent of (not

connected to) any of the other variables.

The aim of this analysis is to understand whether the common cause model

has a higher likelihood, indicating that it is better supported by the data, as

compared to causal structures which are not aligned with essentialism the-

ories (for example, common effect, independent, best-fit-independent, etc.).

Support for the common cause model for animal categories would suggest

that people acquire essentialist beliefs based on perceptual input.2

FIGURE 3.2: Common Cause

2Due to a small sample size of 171 images per category, the feature ratings in Dataset 3
were converted to binary variables using binning. Additional analysis is performed using 3
Bins instead of 2 Bins. The results can be found in Appendix B.
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FIGURE 3.3: Common Effect

FIGURE 3.4: Independent

3.2.1 Top 4 Features

We first compared the common-cause, common effect, independent and best

fit models using the four highest-rated features.3 We restricted ourselves to

the top 4 features due to a small sample size of 171 data points per category.

Common-Cause vs Independent

We compared the likelihood of the common cause structure with the inde-

pendent structure by calculating the Bayes Factor.4 Figure 3.5 shows that for

both essential as well as non-essential categories, the common cause struc-

ture is strongly supported by the data as compared to the independent struc-

ture.

3By highest rated, we mean the features which had the maximum weight in the property
norm studies conducted by McRae et al. (2005) and Devereux (2014) Weight refers to the
number of people which listed the property in the task.

4likelihoodo f Hypothesis1/likelihoodo f Hypothesis2; Bayes Factor > 102 indicates very
strong evidence for Hypothesis 1 as compared to Hypothesis 2. We report ratios of likeli-
hoods throughout the thesis. However, ratios of BIC returns similar results since the graphs
do not differ substantially in the number of parameters.
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FIGURE 3.5: Bayes Factor(Common Cause / Independent)
The figure shows the performance of the common-cause graph as compared to the
independent graph. A Bayes Factor >100 indicates very strong evidence for the com-
mon cause model as compared to the independent model. We find that for all cate-
gories, the common cause model is better supported by the data as indicated by the
high Bayes factors. The top 4 features were used in this comparison.
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FIGURE 3.6: Bayes Factor(Common Cause / Common Effect)
The figure shows the performance of the common-cause graph as compared to the
common effect graph. We find that for all categories, the common cause model is
better supported by the data.

Common-Cause vs Common-Effect

As shown in Figure 3.6, the Bayes Factors reveal that the common cause

structure is better supported by the data as compared to the common-effect

structure. This is true for all categories and there is no variation between

essential and non-essential categories.

Best-fit model vs Common-Cause

We also examined the difference between the common-cause structure and

the best fit model. Low Bayes factors, as shown in Figure 3.7, indicate that the

likelihood of the common-cause structure is not much lower than the likeli-

hood of best-fit graph, for a number of essential and non-essential categories.

In fact, for 3 animal categories (goldfish, gorilla and snail) and 1 artifact cate-

gory (flute), the common cause model is the best-fit model. The lower Bayes

factors suggest that for a number of categories, the common-cause model is

a good approximation for the best-fit model.
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FIGURE 3.7: Bayes Factor(Best Fit / Common Cause)
The figure shows the ratio of the likelihood of the best-fit graph to the likelihood
of the common-cause graph. For 3 essentialised and 1 non-essentialised category,
the common cause graph is the graph which fits the data the best, as indicated by a
Bayes Factor equal to one.

To get a better sense of how close the common cause structure is to the best-

fit model, we calculated the out-degree of the essence dummy variable for

each category. The out-degree of the essence variable is the number of con-

nections of the form: essence −→ f eature. A high out-degree indicates that

a node is important in conceptual representations (Ahn et al., 2000). We find

that the average out-degree for both essentialised and non-essentialised cat-

egories are close to each other. However, in a larger number of essentialized

categories the dummy variable is connected to all four nodes. The out-degree

of the dummy variable for various categories is shown in Figure 3.8.

The above analysis was performed using the four highest-weighted features.

We examined if the results discussed above held valid using all combinations

of 8 features taken 4 at a time, i.e. for each category, we constructed 70 differ-

ent graphs. The average Bayes Factors for the common cause structure when

compared to the independent model are shown in Figure 3.9. Figure 3.10
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FIGURE 3.8: Out-degree of dummy variable
The out-degree of the essence (the number of variables which the essence is a cause
for in the best fit structure) has been shown in the figure above. A node with a high
out-degree is considered to be important in conceptual representation.

shows the average Bayes factor of the common cause model when compared

to the common effect structure. The graphs indicate that for all categories.

the common-cause model is better supported by the data than the common-

effect model and the independent model.

The analysis was repeated using the top 3 features instead of the top 4 fea-

tures. The results follow a similar pattern and can be found in Appendix

B.

3.2.2 Using All 8 features

Due to a limited data sample, we did not compare the common-cause model

with the common effect model5 using all eight features. However, we could

5The conditional probability table for the dummy variable in the common-effect model
has 27 rows, and would require at least 10 ∗ 27 data points for a reasonable probability esti-
mate.
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FIGURE 3.9: Average Bayes Factor(Common Cause / Indepen-
dent)

In the figure above, for each category, the average Bayes factor of the common cause
model when compared to the independent model has been plotted. The average
has been calculated by averaging individual Bayes factors for 70 different graph
structures by considering 4 variables (from a set of 8 variables) at a time. The graph
shows the mean Bayes factor along with the standard deviation for each category.
Average Bayes factors indicate that the common cause model is better supported by
the data as compared to the independent model.
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FIGURE 3.10: Average Bayes Factor(Common Cause / Com-
mon Effect)

In the figure above, for each category, the average Bayes factor of the common cause
model when compared to the common effect model has been plotted. The average
has been calculated by averaging individual Bayes factors for 70 different graph
structures by considering 4 variables at a time. The graph shows the mean Bayes
factor along with the standard deviation for each category. Average Bayes factors
indicate that the common cause model is better supported by the data as compared
to the independent model.
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FIGURE 3.11: Bayes Factor(Common Cause / Independent) -
All eight features

Ratio of the likelihood of the common cause model to the likelihood of the indepen-
dent model has been plotted in the graph above. Data for all eight features was used
to estimate the parameters of the graph. Bayes Factors indicate that the common
cause model is better supported by the data as compared to the independent model.

compare the common-cause model with the independent model and the common-

cause model with the best-fit and best-fit-independent model (with certain

restrictions on number of parents).

Common-Cause vs Independent

We examined if the common-cause structure is better supported by the data

when compared to the independent model even in the case if all 8 features

are used. Figure 3.11 shows that for all categories, the data supports the

common-cause structure as compared to the independent model, with no

differences between essential and non-essential categories.

Common-Cause vs Best-Fit model

Further, we compared the best-fit model to the common-cause structure. Due

to a small sample size, we put the restriction that every node can have a max-

imum of four parent nodes in the best fit model. This constraint ensured that



Chapter 3. Part 1: Analysis 39

FIGURE 3.12: Bayes Factor(Best Fit / Common Cause) - All
eight features

Ratio of the likelihood of the best fit model to the likelihood of the common cause
model has been plotted in the graph above. Data for all eight features was used to
estimate the parameters of the graph. The best-fit model was found using the Max-
Min Hill Climbing algorithm with a constraint on the number of parents of a node -
maximum of four.

we had at least 10 data points (approximately) to make an estimate for each

of the conditional probabilities associated with the graph structure. Figure

3.12 shows that for both essential and non-essential categories, the common-

cause model does not perform very poorly when compared to the best-fit

model.

Figure 3.13 shows the out-degree of the essence dummy variable in the best-

fit model using all 8 features (with the 4-parent constraint).

Table 3.2 shows the nodes which had the highest out-degree in the best-fit

network for various essential and nonessential categories. We find that for 4

animal categories and 3 artifact categories, the dummy variable is the node

with the highest out-degree.

The common-cause model was also better supported by the data than the
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FIGURE 3.13: Out-degree of dummy variable in best-fit model
In the figure above, the out-degree of the essence variable in the best fit structure
has been plotted for each category. A high out-degree indicates that a feature is
important in conceptual representations.

category features degree
ant dummy 4
flamingo dummy 4
goldfish has.fins 6
iguana can.eat.insects,has.a.tongue,has.legs 2
gorilla dummy 6
lion can.roar 3
peacock has.a.beak 6
pig oinks 4
snail dummy 5

TABLE 3.2: Nodes with the highest out-degree: Essential Cate-
gories
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category features degree
balloon dummy 5
bucket dummy 5
candle has.a.wick 3
desk dummy 5
flute produces.music,dummy 3
microwave is.electric 3
necklace is.worn.around.the.neck 4
taxi used.for.passengers 3
umbrella has.spokes 3

TABLE 3.3: Nodes with the highest out-degree: Non-Essential
Categories

best-fit-independent model, as shown in Figure 3.14 (the best fit model with

the constraint that the essence dummy variable is not connected to any of

the features). The ratio of marginal likelihoods6 of the two graphs were also

compared (Graph in Appendix B). The results are similar, indicating support

for the common cause graph as compared to the best-fit-independent graph.

A possible argument to our methodology of comparing causal structures us-

ing Dataset 3 is that we are using negative examples from all categories. For

example, the data for the category GORILLA consists of 120 positive examples

of gorillas and 50 negative examples of non-gorillas which include instances

from all artefact categories and other animal categories. However, it is possi-

ble that people actually construct causal structures using negative examples

only from related categories. For example, the negative examples for the cate-

gory GORILLA should be limited to instances of other animals and should not

include artefact categories. To verify if our results were affected by this, we

repeated the analysis on a reduced dataset, where negative examples were

from the same group, i.e. animal negatives for animal categories and artefact

negatives for artefact categories. The results are consistent with the analysis

presented above and can be found in Appendix B.

6Ratio of the likelihood of the distribution across the observed variables in the two graph
structures, i.e. by marginalizing the dummy variable
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FIGURE 3.14: Bayes Factor (Common Cause/Best-Fit-
Independent)

Bayes Factors of the Common Cause Graph when compared with the Best-Fit-
Independent model. Best-fit-independent represents the case when the essence vari-
able is not causally responsible for any perceptual features.

3.3 Identifying Latent Variables using the RFCI al-

gorithm

The analysis above relies on the use of a dummy variable which plays the

role of a causal essence which is shared by all members of a category. The

second approach that we followed was to use the Really Fast Causal Infer-

ence Algorithm on Dataset 3 after binning the variables into binary variables.

We identified pairs of variables which share a latent cause (←→). The tuning

parameter alpha7 was increased in steps of 0.0025 from 0.01 to 0.06 and the

causal structure was learnt at each step, i.e. a total of 20 causal structures

were learnt.

Tables 3.4 and 3.5 shows the number of pairs of variables which had a latent

7The RFCI algorithm has a tuning parameter which is the significance level of the condi-
tional independence test
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Category Pairs Sharing a Latent Cause
Ant 8
Flamingo 0
Goldfish 1
gorilla 1
iguana 1
lion 1
peacock 0
pig 1
snail 3

TABLE 3.4: Number of variable pairs sharing a common cause
(essential categories)

Category Pairs Sharing a Latent Cause
balloon 2
bucket 6
candle 2
desk 2
flute 1
microwave 2
necklace 1
taxi 0
umbrella 2

TABLE 3.5: Number of variable pairs sharing a common cause
(non-essential categories)

cause between them, for various essential and non essential categories. We

include a pair of variables if at least 3 causal structures out of 20 suggest that

there is a latent cause between the pair of variables. The variable pairs which

shared a common cause can be found in Appendix B.

We find that the for both essential and non-essential categories there are fea-

ture pairs which share a common cause, indicating that the data supports the

inference of a common cause for both groups.
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3.4 Discussion

We first summarize our results and discuss what the implications might be,

following which we discuss if there were any limitations in our study which

might have affected the results.

3.4.1 What do our results mean?

The analysis in this chapter suggests the following:

• The common cause structure is better supported by the data as com-

pared to the common-effect, independent structures and best-fit-independent

structures.

• The common cause structure is not much worse than the best fit model

of the graph. This is evident from the lower Bayes factors and from the

high out-degree of the essence dummy variable in most categories.

• Hidden causal variables exist in both essential and non-essential cate-

gories.

Essentialism suggests that people’s representations of natural kinds consists

of a hidden, causal property which is responsible for various surface fea-

tures. The goal of the first part of the thesis was to explore whether percep-

tual features support the inference of hidden causes. Further, we expected

to find differences in causal structures between essential and non-essential

categories. As shown by our rational model of structure learning, the key

take-away point is that the perceptual input supports the inference of hid-

den causes.

However, evidence for the common-cause model and presence of latent fea-

tures is insufficient to justify why people are essentialists. We find that the
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common-cause model is better supported by the data for both essential and

non-essential categories, implying that although we can possibly explain why

people have essentialist beliefs for animal categories based on support for the

common-cause model, we cannot explain why they do not have essentialist

beliefs for artefact categories.

In our analysis, we also find that for various categories from both groups (es-

sential and non-essential), the essence variable has a high out-degree, i.e. it is

a causally important feature. This aligns with the Causal Status Effect (Ahn

et al., 2000) which states that the importance of a feature in a causal struc-

ture determines it’s conceptual importance. A high out-degree of the essence

variable explains why the essence is important in people’s representations of

animal categories. However, we are unable to explain why the same dummy

variable is not important or does not exist in representations of artefact cate-

gories.

In the next section we speculate about potential reasons why people are not

essentialists about artefacts.

3.4.2 Why are people not essentialists about artefacts?

Based on our analysis, we speculate that there are two reasons which can

possibly explain why people’s representations of artefacts do not consist of a

hidden essence. First, it is possible that people use the perceptual informa-

tion to learn about causes but do not attribute causes of the artefact categories

to a hidden essence. Possibly, people have an inherent bias which influences

their ability to think about causes for artefacts as a function rather than a

essence (Bloom, 1996; Ahn, 1998; Rips, 1989). Second, it is possible that al-

though the data and models suggest that people should infer a cause based

on perceptual features, people do not use this perceptual information.
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In the next two sections we highlight any limitations in our approach and

identify areas for future research.

3.4.3 Does the latent cause have to be the ’essence’?

We use two strategies to estimate causal structures. First, we explicitly de-

fine a variable which is playing the role of an essence. This dummy vari-

able allows us to compare causal structures in which the essence is causally

responsible for perceptual features (common-cause) with structures where

the essence is not important (independent, best-fit-independent etc.). Sec-

ond, we use an approach which learns the causal structure and estimates

hidden causes between pairs of variables. This helps us understand if the

data suggests that there are pairs of variables which share a common cause

and people might be using this information to represent an essence in their

conceptual representations.

A possible argument or objection to our methods might be that that these la-

tent variables (or the explicit variable) are not the same as the essence which

essentialist theories describe. Strevens (2000) argues that a latent cause could

also be attributed to a causal law governed by category membership (mini-

mal hypothesis - Strevens, 2000). According to Strevens, essentialism implies

a causal structure of the form shown in Figure 3.15 and a minimal causal law

of category membership implies a structure shown in Figure 3.16. The causal

structures that we are considering do not differentiate between the two.

We look at the existence of latent causal variables and evidence for the common-

cause structure as a necessary condition for essentialism but not a sufficient

condition. We are not making the claim that existence of latent causal vari-

ables is a formal proof for the theory of essentialism. However, an absence of

latent causal variables would question the concept of essentialism.
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FIGURE 3.15: Essentialism

FIGURE 3.16: Minimal Hypothesis
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3.4.4 Limitations in our approach

In this thesis, we compare causal structures at the basic-level (for example,

dogs, peacocks, etc.). It is possible that essentialism does not exist at this level

but exists higher up the category hierarchy at the superordinate level. For

example, people might have a single essence in their representation of all ob-

jects that fly or all mammals etc. This possibility has not been explored in our

study, however, our method can be easily extended to a hierarchical learning

approach. However, most developmental evidence for essentialism is based

on experiments which have studied differences at the basic-level hence we

are not sure if a hierarchical method would actually capture essentialism.

It is possible that using semantic features from property norm studies does

not actually capture the causal structure present in people’s representations

of categories. Possibly abstract features extracted from a Convolutional Neu-

ral Network might be closer to conceptual representations. Peterson et al.

(2016) demonstrate that the hidden layer of a convolutional neural network

can be re-weighted to represent category representations. However, a bayesian

structure learning approach might not be the ideal choice for estimating causal

structures due to the large number of variables in CNN representations (or-

der of 1000000 variables). Even the best heuristic methods currently can deal

with a maximum of 100000 variables assuming at least 1000 data points are

available for each category.

A possible limitation in our approach might be that we are limited to 9 cat-

egories from each group. However, we have tried to capture a wide range

of categories. For the essential categories, we use examples from mammals,

amphibians, birds, etc. and for the non-essential categories, we use furniture,

music instruments, utilities, etc. However, since our study is limited to only

9 categories from each group, it is possible that these categories have some
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underlying systematic patterns and do not span the range of all essential and

non-essential categories. It would be interesting to study the causal struc-

tures of categories such as plants and fruits. These are categories which do

not have a function nor do they have an essence. An absence of latent causal

variables would be interesting.

Another possible limitation might be that people are learning causal struc-

tures based on a different set of positive and negative examples. We esti-

mate the likelihood of a structure based on a dataset comprising of positive

and negative examples. We try two methods of learning the causal struc-

ture: first, using negative examples from all categories and second, using a

reduced set of relevant negative examples. It is unlikely that people are learn-

ing the structure based on an entirely different set of examples, but it might

be worth exploring.

Currently, in our study there is no differentiation between negative examples

in the data set.8 We have used a binary variable as a proxy for the ideal

essence due to a small sample. For example, in the data for candle, for all

the negative examples the dummy variable is set to 0. With a larger data

sample, it would be interesting to examine whether these results replicate if

the dummy binary variable is replaced with a categorical variable.

Our study relies on the assumption that adults and children are perceiving

similar features. One possible argument might be that we have not been able

to observe differences between artifacts and animals in our dataset because

children perceive a different set of features. Future studies can be designed

to capture data from child participants instead of adults.

Part 1 of the thesis allowed us to understand how the perceptual features

might be playing a role in the development of essentialist beliefs. Using

8Essence variable set to 0
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causal models helped us understand that the perceptual environment sup-

ports the inference of hidden causes, allowing us to speculate why people

might be essentialists. In the second part of the thesis, we study how generic

noun phrases vary across categories and discuss their role in the develop-

ment of essentialist beliefs.
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Part 2
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Chapter 4

Part 2: Method

The second part of this thesis is concerned with studying the role that Generic

Noun Phrases play in the development of essentialist beliefs in children. We

examine how the use of generic speech varies across categories and test the

hypothesis that adults and children produce a larger number of generic state-

ments for essential categories as compared to non-essential categories. In

order to do so, we developed a classifier to automatically identify generic

noun-phrases in the CHILDES dataset. In this chapter, we discuss existing

methods for the automated identification of generic noun phrases and the

system which we developed.

4.1 Existing Work: Automated Identification of Generic

Noun Phrases

Generic noun phrases are phrases that do not refer to a specific member of a

class but refer to the class in general. For example, the statement, Elephants

take a bath with their long trunk is a generic statement about the category ele-

phants but the statement, Charlie, the elephant, uses his trunk to have a bath is

not a generic statement since it refers to a particular individual of a class.
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To the best of our knowledge, there have been three attempts to automate

the identification of generic noun phrases. Suh (2006) proposed a rule-based

approach which uses patterns of part of speech tags to automatically identify

generic noun phrases. Reiter and Frank (2010) argue that identification of

generic noun phrases should be solved as a classification task rather than a

rule-based approach. Reiter and Frank use a Bayesian Network with a fea-

ture set comprising of semantic and syntactic features. They test their work

on the ACE-2 corpus and show a considerable improvement to the method

proposed by Suh (2006). Friedrich and Pinkal (2015) propose a new corpus

called WikiGenerics with a new annotation scheme as compared to the ACE

corpora. Further, they propose a sequence labelling model (using a condi-

tional random field) for the automated identification of generic noun phrases.

The methods proposed by Reiter and Frank (2010) and Freidrich and Pinkal

(2015) use a combination of syntactic and semantic features (including the

wordnet lexical category of the noun). It is possible that the datasets which

have been used have a larger number of generic statements from certain cate-

gories. This would imply that the classifiers might be biased towards certain

categories. Since our goal was study how generic noun phrases vary across

categories, it was important for us to ensure that the classifier we used did

not depend on semantic features and was not biased towards certain cate-

gories.

Therefore, we developed a sequence based classifier, using Long Short Term

Memory Networks (LSTMs) which achieves a similar performance as com-

pared to the method proposed by Friedrich and Pinkal (2015) using a min-

imal feature set comprising of only syntactic features. The next section in-

troduces recurrent neural networks and LSTMs, following which we discuss

the architecture of the model that we used.
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4.2 RNNs, LSTMs and GRUs

Recurrent Neural Networks (RNNs) are a class of neural networks for pro-

cessing sequential data (X1,X2,....Xt). Unlike a feed-forward neural network

where the output depends only on the current input, the output in an RNN

depends on the current input as well as the previous output. An RNN can

be thought of as neural network with a loop, which allows for information to

remain in the sequence. Figure 4.1 shows a Recurrent Neural Network which

receives an input Xt at time-step t and outputs a value ht. The loop shows

that the output ht will be available to the network at the next time step, i.e.

t + 1. This architecture serves the purpose of memory in the network, allow-

ing sequential information to be preserved in the RNN’s hidden states. The

input data to an RNN does not necessarily have to be in time-steps like time

series data, and could be any sequential data, for example, a sentence or a

paragraph.

FIGURE 4.1: Recurrent Neural Network
Unfolding a recurrent neural network

In theory, Recurrent neural networks are supposed to be able to pick out cor-

relations and dependencies across time steps in sequences. However, Bengio
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FIGURE 4.2: LSTM
Architecture of a Long Short Term Memory Network

et al. (1994) and Hochreiter (1991) show that in practice recurrent neural net-

works suffer from the problem of the vanishing gradient1 and are unable to

pick out long term dependencies, i.e. dependencies which are spread out

over a large time interval. A Long Short-Term Memory Network (LSTM) is a

recurrent network architecture which is capable of capturing these long-term

dependencies.

LSTMs maintain an additional state, called the cell state Ct, which is avail-

able to the network at a time-step t, apart from the input Xt and the output

from the previous hidden unit, i.e ht-1. LSTMs have the ability to add and

remove information from this cell state using structures called gates. Figure

4.2 shows the architecture of an LSTM at time-step t. f represents informa-

tion being forgotten from the cell state using a gate. i and g represent new

information being added to the cell state.

The Gated Recurrent Unit (GRU) is a variant of the LSTM in which the forget

and input gates are merged into an update gate. The GRU does not maintain

a separate cell state, but rather merges the hidden state and the cell state.

Figure 4.3 shows the architecture of a GRU cell.

1The gradient becomes very small which effectively prevents learning in the network
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FIGURE 4.3: GRU
Architecture of a Gated Recurrent Unit

To develop a classifier for the identification of a generic noun phrase in a

sentence, we use a combination of LSTMs and GRUs. The architecture of the

model is discussed in the next section.

4.3 Automated Identification of Generic Noun Phrases

We use a sequence based approach to classify if a sentence consists of a

generic noun phrase or not. For each step of the sequence (the sequence here

is the sequence of words - the sentence), the input vector Xt is a concatenation

of two one-hot encoded vectors.2 These are:

• The Part of Speech (POS) Tag of the word 3

• The Dependency label associated with the word in the Dependency

Parse Tree. (Johansson et al., 2008)

2A One-Hot encoded vector is way of representing a categorical variable as a binary vec-
tor. For example, a variable X which can take 3 values, can be represented as [0,0,1]; [0,1,0]
or [1,0,0] depending on the value that X takes.

3We use the universal part of speech tag-set which consists of 16 possible POS-tags.
(Petrov et al., 2011)
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Word Pos-Tag Dependency
Elephants noun nsubj
do verb aux
not adv neg
eat verb ROOT
birds noun dobj
. punct punct

TABLE 4.1: Features

For example, for the sentence, Elephants do not eat birds., the POS Tags for each

of the words and the corresponding dependency label would be as shown in

Table 4.1:

The input vector Xt corresponding to each word is a concatenation of the

two labels after one-hot encoding each label. This concatenated vector was a

vector of length 64. The LSTM cell is combined with a fully connected neural

network layer (Dense) for a classification task. Further, multiple LSTM and

GRU cells can be stacked together. This is the equivalent of stacking multiple

hidden layers in a feed forward network.

Our model consists of seven different architectures of networks which were

trained independently. The decision on generic/non-generic was made by

taking the majority vote across classifiers. The architectures of the classifiers

were:

• input(64) → GRU(90) → GRU(60) → GRU(30) → Dense(2) →

output

• input(64) → GRU(45) → GRU(45) → GRU(45) → Dense(2) →

output

• input(64) → LSTM(30) → GRU(45) → GRU(45) → GRU(45) →

GRU(30)→ Dense(2)→ output

• input(64)→ GRU(90)→ LSTM(90)→ Dense(2)→ output
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• input(64) → GRU(30) → GRU(40) → GRU(50) → GRU(60) →

GRU(70)→ Dense(2)→ output

• input(64)→ LSTM(196)→ GRU(196)→ GRU(196)→ GRU(196)→

LSTM(196)→ Dense(2)→ output

• input(64) → GRU(396) → GRU(192) → GRU(98) → Dense(2) →

output

The number in brackets denotes the dimensionality of the output of the layer.

In each of the models, the activation function of the dense layer was the soft-

max function. Each model was trained with a weighted categorical cross en-

tropy loss function4 where the error associated with classifying a non-generic

statement as generic (false positive) was weighed 1.5 times more than the er-

ror associated with classifying a generic statement as non-generic (false neg-

ative).

We tested our model on the WikiGenerics dataset (Friedrich and Pinkal, 2015).

The WikiGenerics dataset consists of 102 classes of documents (each docu-

ment consists of generic and non-generic statements). Friedrich and Pinkal

(2015) test their model by using a leave-one-document-set-out cross valida-

tion strategy. In each cross validation step, examples from 101 document sets

are used for training and the model is tested on the left out document set. We

followed the same strategy. Table 4.2 shows how our majority voting classi-

fier performed in comparison to the existing methods, i.e. Reiter and Frank

(2010) and Friedrich and Pinkal (2015).5

We also implemented a variant of our model with an extended feature set

comprising of syntactic and semantic features. We added the following se-

mantic features for every word:

4The ’Adam’ optimizer was used for optimization (Kingma and Ba, 2014).
5These numbers are as reported by Friedrich and Pinkal’s paper (2015). We did not re-

implement their models.
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Model-Name Accuracy F-Measure
Bayes-Net (Reiter and Frank, 2010) 71.7 72.3
Conditional Random Field (Friedrich and Pinkal, 2015) 79.1 78.8
Majority Voting Classifier (syntactic features) 76.4 79.3

TABLE 4.2: Model Performance

• Word net lexical category of the word

• word2vec representation of the word

We find that on adding the semantic features, the accuracy of the model

increases to 78.2 and the F-Measure increases to 80.5. However, since this

increase may be a result of a bias towards certain categories in the dataset

which might impact the classifiers performance on child-directed speech, we

use our syntactic model which achieves a comparable performance to exist-

ing state-of-the-art methods.

We used our model to analyse corpora from the CHILDES data set to study

how generic speech varies across age groups and categories. The analysis is

discussed at length in the next chapter of the thesis.
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Chapter 5

Part 2: Analysis

In the previous chapter, we implemented a classifier for the detection of

generic noun-phrases. We use this model to understand how the use of

generic noun phrases varies across categories and age groups in child speech

and child-directed speech. In this chapter, the words generic and generic

noun-phrases have been used interchangeably.

5.1 Data

We collected data from 28 studies from the English (UK) and English (North

America) corpora available on CHILDES. To ensure that our dataset com-

prises of natural conversations that occur between children and adults, we

restricted ourselves to 28 studies which were naturalistic and did not include

studies in which children were being asked a specific set of questions or be-

ing told to play with a restricted set of toys. The names of the studies have

been listed in Appendix C.

The number of utterances by children for various age categories are shown

in Table 5.1. Due to a small number of utterances for the age groups 5-6, 6-7

and over 7, while performing any age-wise analysis, we merge the three into
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Age-Category
(in years) Number of Utterances

Less Than 2 117551
2-3 567749
3-4 264232
4-5 212423
5-6 11279
6-7 1127
Over 7 997

TABLE 5.1: Number of utterances: Child Speech

Age-Category of Child
(in years) Number of Utterances

Less Than 2 220156
2-3 787690
3-4 352240
4-5 224508
5-6 7877
6-7 1258
Over 7 1576

TABLE 5.2: Number of Utterances: Adult Speech (as a function
of the age of the child)

a single age-group (Over-5). We do not consider child speech lesser than the

age of 2 in any of our analysis.1

Similarly, we extracted all the speech directed towards children. Table 5.2

shows the division of the number of utterances by adults for various age

categories, i.e. the age of the child the speech is directed towards.

In the next section, we study how the use of generic phrases varies across

categories and age groups.

1Most of the speech is limited to one or two words at a time, making it very difficult to
predict genericity.
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FIGURE 5.1: Percentage of Generics in Child Speech
The figure above shows the percentage of child speech which is generic for each age
category.

5.2 Analysis

Genericity across age groups

We first examined the percentage of child speech which is generic as a func-

tion of the child’s age. The results shown in Figure 5.1 are consistent with

the findings of Gelman et al. (2008), which showed that the percentage of

utterances which are generic increases with age. However, we find a higher

percentage of generics as compared to the study conducted by Gelman et

al.(2008). Figure 5.2 shows the percentage of adult speech which is generic

as a function of the age of the child that is being addressed. Again, the re-

sults are consistent with the study conducted by Gelman et al. (2008), which

showed that percentage of generic utterances increases till 3 years of age and

then decreases.
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FIGURE 5.2: Percentage of Generics in Adult Speech
The figure above shows the percentage of child-directed (adult) speech which is
generic as a function of the age of the child.

Category Generic
Animal snakes don’t really have heads;I dunno I think raccoons might eat birds eggs
Artifact I mean helicopters are often used
Person Cowboys have big faces
Plant it’s called peel the skin the skin on fruit is called peel
Object where’s the shiny stars
Food collard greens is good for you

TABLE 5.3: Examples of Generic Speech

Genericity across categories

Generic noun phrases were found from the following lexical categories2: ani-

mals, artifacts, plants, food, natural objects and person. Examples of Generic

and Non-Generic sentences from each category are shown in Tables 5.3 and

5.4.

Figure 5.3 shows the division of generic and non-generic speech in absolute

2wordnet lexical categories: https://wordnet.princeton.edu/documentation/lexnames5wn
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Category Non-Generic
Animal how about I trace this lizard
Artifact tell her what happened to your toy,where’s the top of this basket
Person poor Aunt Dot she has nobody to love;I know a little girl who lost her finger
Plant that’s a very nice tree that’s a big tree
Object this star is already touching this star
Food how about Skippy peanut butter

TABLE 5.4: Examples of Non-Generic Speech

numbers across categories in adult speech. We find that the majority of gener-

ics in adult speech are from the artifact category. However, non-generic state-

ments follow a similar distribution across categories. This indicates that the

higher proportion of artefact generics in our dataset is probably because the

number of utterances about artefacts was higher than the number of utter-

ances for other categories, rather than a tendency of adults to produce generic

statements about artefacts. We also find that child speech follows a similar

pattern for both generic and non-generic speech (Figure 5.4).

To get a better sense of generic usage across categories in child and child-

directed speech, we compared the percentage of generic statements in each

category, i.e. the number of generic statements from a particular category/Total

number of statements which belong to the category (Figure 5.5).

We find that in both adult and child speech, natural objects is the category

with the highest percentage of generic statements. While children tend to

produce a higher percentage of generic statements for the animal category

as compared to the artifact category, the differences are small (just over 1%).

Adults on the other hand produce a slightly higher percentage of generic

statements for the artifact category as compared to the animal category.

Figures C.1 to C.8 (Appendix C) highlight the variation in generic speech

across categories (by percentage of genericity within a category) across age

groups. The results across age groups are similar: by percentage of generic-

ity, natural objects are spoken about most often in a generic sense, and the
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FIGURE 5.3: Division of Generics and Non-Generics in Adult
Speech

The figure above shows the division of the raw counts of generic speech and non-
generic speech across categories in child directed speech. Note that non-generic
speech which does not consist of nouns has not been included in our analysis. We
find that by division of raw counts, noun.artifact is the lexical category with the max-
imum number of generic and non-generic statements. Total number of statements
have been reported above each bar (grey for generic speech, black for non-generic
speech)
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FIGURE 5.4: Division of Non-Generics in Child Speech
The figure above shows the division of the raw counts of generic speech and
non-generic speech across categories in child speech. By division of raw counts,
noun.artifact is the lexical category with the maximum number of generic and non-
generic statements. Total number of statements have been reported above each bar
(grey for generic speech and black for non-generic speech)
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FIGURE 5.5: Genericity in each category: Child and Child-
Directed Speech

Each bar represents the percentage of generic statements within a category. Total
number of generic statements have been reported above each bar (grey for child
speech and black for adult speech).
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differences between animal and artifact genericity (by percentage) are small.

We find that our results are not consistent with results presented by Gelman

et al. (2008). Their study suggested that both children and adults produce a

higher number of generic statements for animal categories as compared to ar-

tifact categories. The study conducted by Gelman et al. (2008) indicates that

over 40% of generics (by division of raw counts across categories) are from

the animal category and approximately 25% are from the artifact category, in

both child and adult speech. Our results, in Figure 5.3 and Figure 5.4, indi-

cate that approximately 13% of the generics are from the animal category and

approximately 45% of the generics are from the artefact category. Gelman et

al. (2008) do not report the percentage genericity of each category. However,

they argue that a higher percentage of generic speech by raw counts for the

animal category is not because people speak more about animals. Our re-

sults on the other hand suggest that both generic and non-generic statements

follow a similar distribution, indicating that percentage genericity is a better

metric. Our results suggest that the difference in percentage of genericity of

the animal category as compared to the artefact category is small. In fact,

by percentage of genericity, adults produce more generic statements from

artefact categories as compared to animal categories, indicating that generic

noun phrases might not be playing a role in the development of essentialist

beliefs in children.

To get a better sense of the variation of generic statements across categories,

we extracted the top 20 nouns which occur in generic statements. Table 5.3

shows the top 20 nouns in adult speech and Table 5.4 shows the top 20 nouns

in child speech.

We find that by both, percentage of genericty as well as by raw counts, there

are words from artefact as well as animal categories in the top 20 nouns. It is

interesting to note that children produce generic noun-phrases about nouns
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Category Generic Non-Generic Generic
(Raw Counts) (Raw Counts) (by percentage)

Artifact car, house, train, floor, house, car, room, train, floor, road, train, sock,
truck, toy truck, bag, ball chair,truck, bed, toy

Person baby, man, boy, girl baby, man, boy, friend, Kid, man, child
tea

Animal cat, bird, dog, egg cat, dog, bird bear, bird, elephant
Plant flower, tree flower grass, tree
Object sun, sky
Food apple, biscuit, milk, breakfast apple, milk, breakfast, apple, biscuit

tea

TABLE 5.5: Top 20 nouns in generic and non-generic speech
(adult speech)

Columns 1 and 2 are based on raw frequency of the words. However, since words
with a high generic frequency are probably in the list because of a high total fre-
quency, we calculate the top 20 words by percentage of generic use, i.e. frequency
of the noun when used in a generic sense/total frequency of the word. We include
words which have a frequency of at least 100 in the entire corpus.

Category Generic Non-Generic Generic
(Raw Counts) (Raw Counts) (by percentage)

Artifact car, house, room, floor, car, house, room, train, floor, road, bed, toy
ball, engine, pant truck, boat, bus, bag

Person baby, boy, girl, friend Man, baby, girl Kid, monsters, mother,
doctor

Animal dog, cat, cow, lion cat, dog, horse, bear, bird dinosaur, snake, bird, cat
Plant flower, tree flower tree
Object sun, star
Food apple, egg, chocolate apple, milk, cookie, apple, biscuit

TABLE 5.6: Top 20 nouns in generic and non-generic speech
(child speech)

Top 20 nouns by raw frequency as well as by percentage of generic use.
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which do not necessarily have a high percentage of genericity in adult speech

(example: doctor, monsters, dinosaurs etc.). These results follow a similar

pattern when we consider the top 50 and top 100 nouns as well.

5.3 Discussion

5.3.1 Summary

The analysis conducted above, suggests the following:

• Natural Objects is the category with the highest percentage of generic

statements.

• Differences in use of generic noun phrases between artifact and animal

categories are small.

• Use of generic statements in child speech is not limited to those cat-

egories which have a high percentage of generic use in child-directed

speech.

We discuss where our results differ from the original study conducted by

Gelman et al. (2008) and how our results fit into the discussions about the

development of essentialism.

5.3.2 Differences with Gelman et al. (2008)

Earlier studies (Gelman et al., 2008; Gelman and Tardif, 1998) have indicated

that generic speech in child speech and child-directed speech is content spe-

cific. A higher number of generics were found to be from the animal cate-

gories and it has been argued that these results are not because people are

speaking more about animals in general. The study conducted by Gelman et
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al. (2008) does not report a metric of percentage genericity, and claims about

animal bias in child-directed speech are based on division of raw counts

across categories. We find that by division of raw counts, generic speech and

non-generic speech follow a similar pattern, and by percentage genericity the

differences across the categories are very small.

Why do our results differ? We speculate that there are two possible reasons:

One possible argument might be that the classifier is not performing well,

which in turn affects our analysis. However, performance of the classifier is

unlikely to account for the differences in the two studies. Currently the classi-

fier has an F-Measure of 79.3, which is better than (or similar in performance

to) existing state of the art methods. Gelman et al. (2008) claim that there

is a difference in the order of 15-20% when generics about animals are com-

pared with artefact generics.3 Our results suggest a difference in the order of

close to 1%. Even if the classifier is not capturing all the generic statements

or making a few errors, it should still capture the patterns of difference, if the

differences actually exist. Further, since we are using a classifier which does

not depend on semantic features, these errors would occur in both animal

and artefact categories, and hence although the actual count of number of

generics might be over or under estimated, the patterns of genericity should

not be affected.

Another possible reason for the difference in results is that the corpora used

by Gelman et al. (2008) is biased towards certain categories. This is possible

considering that their study uses data from only eight children. By substan-

tially increasing the size of the dataset, we reduce the chances of biases in

the dataset towards certain categories. In the future, we plan to extend our

3Note that Gelman et al. (2008) do not report percentage genericity and only report di-
vision based on raw counts. Hence we assume that as per their claims, even percentage
genericity would follow a similar pattern of distribution of raw counts.
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analysis to capture differences in each corpora by studying how generic out-

put produced by a child varies with input. This analysis would allow us to

examine if particular corpora have a content specific bias.

5.3.3 What do our results mean for Essentialism?

The fact that natural objects are spoken about in a generic sense, can explain

why people develop essentialist beliefs about such categories. However, the

lack of differences in generic use between animals and artefacts suggests that

generic noun phrases are not the only reason why people develop essentialist

beliefs. Developmental studies have shown that children develop essential-

ist beliefs even in the absence of generic noun phrases (Gelman, 2003). Sim-

ilarly, our results indicate that the differences in patterns of generic speech

between essentialised and non-essentialised categories are small. This po-

tentially means that generic noun phrases are not a source of essentialist be-

liefs. Possibly people have an inherent bias for animal categories which is

strengthened on hearing generic noun phrases for natural kinds.

In the next chapter, we summarize our findings from both the parts and dis-

cuss future directions of research.
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Chapter 6

Discussion

The goal of this thesis was to study why people have essentialist beliefs. In

this chapter we summarize our analysis, discuss the implications of our re-

sults, limitations of our study and directions for future research.

6.1 Summary

In Chapter 1 we discuss that the representation of an essentialised category is

structured, coherent, has an inductive potential and consists of an underlying

structure of latent causal features which are stable over transformations. In

this thesis, we tried to explain why representations of categories consist of

two of these properties. We study why conceptual representations consist of

an essence which is a latent causal feature and why people consider certain

categories to have an inductive potential.

Hidden, Causal Variable

Essentialism theories suggest that people’s representations of categories con-

sist of a hidden variable, i.e. the essence, which is causally responsible for

various surface features (Gelman, 2003). In the first part of this thesis, we
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tried to explain why representations of categories might consist of a hid-

den causal variable, by examining whether people might be inferring hid-

den causes because of the perceptual features of a category. We find that for

both essential and non-essential categories, perceptual features serve as cues

for the inference of hidden causal variables. This potentially explains why

people develop essentialist beliefs for animal categories based on the hidden

causes inferred but it does not explain why people do not develop essentialist

beliefs for artefact categories.

Inductive potential

In the second part of the thesis, we studied the role that generic noun phrases

might play in the development of essentialist beliefs. It has been suggested

that the use of generic noun phrases for a category implies that the category

is coherent and has an inductive potential. Previous studies (Gelman and

Tardif (1998) and Gelman et al. (2008)) have shown that generics in child-

directed speech are content specific and parents produce a higher number of

generics when talking about animals as compared to artefacts. We extend

the study conducted by Gelman et al. (2008) to a larger data set and exam-

ined whether generics used in child and child-directed speech are content

specific. We find that both adults and children produce a higher percentage

of generics when they are talking about natural objects. Therefore, we might

be able to explain why people have essentialist beliefs for natural kinds such

as stars and beaches. However, we find that the differences in generic speech

between animal and artefact categories are small. Hence, we are unable to

explain if generic speech is actually responsible for the development of es-

sentialist beliefs.

What are the implications of our results? Our results suggest that the en-

vironment offers a variety of perceptual and linguistic input for people to

develop essentialist beliefs. However, our results also open up the question
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of why do people essentialize differently for animals and artefacts in spite of

similar input - generic noun phrases and latent variables exist for animal and

artefact categories.

6.2 Limitations and Future Directions

Our study indicates that the environment (particularly, the perceptual fea-

tures) might be the source of essentialist beliefs in people. We suggest that

future work should be aimed at analysing the reason for the difference in

essentialist beliefs for natural and artefact kinds. In our approach of trying

to explain why are people essentialists, we have followed a strategy of ex-

plaining two different aspects of essentialism - causality of surface features

and inductive potential of a category. Neither of our studies can fully ex-

plain why people’s representations of categories consist of these properties

for animal categories but not for artefact categories. We have tried to separate

linguistic and perceptual input and tried to explain how each of these might

be contributing to essentialism. We expected to find differences in both the

studies for essential and non-essential categories, which in turn would ex-

plain the acquisition of different aspects of essentialism. However, based on

the results we suggest that future studies should try to combine linguistic

and perceptual input while trying to answer why people are essentialists.

It is possible that differences between animal and artefact kinds are visible

when a combination of linguistic and perceptual input is available.

6.3 Conclusion

We have tried to answer the question of why are people essentialists. By de-

veloping a framework of using causal graphical models to explain the causal
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structures in representations of features, we try to explain if the perceptual

features are responsible for the inference of a hidden causal essence. We also

studied if generic noun phrases might be responsible for people believing

that certain categories have an inductive potential. We are able to explain

certain aspects of representation of essential categories but are unable to ex-

plain why the same properties do not develop for artefacts and non-essential

categories. Our results potentially indicate that people have an inherent bias

which differentiates between natural and artefact kinds. Further, the envi-

ronment offers perceptual input which might strengthen this difference. Our

study however, is often limited due to a small data sample and we have out-

lined future directions of research which can be undertaken with a larger

data set. By developing a framework of combining property norm studies

with causal graphical models, we open up new directions of research for an-

swering questions which existing models of conceptual representation can-

not answer.
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Appendix A

Additional details of the

experiment

A.1 List of Categories and Features

• LION: can roar, has a mane, has a tail, has fur, has teeth, is ferocious, is

large, lives in jungles, is yellow, lives in Africa

• GORILLA : likes to eats bananas, can swing from trees, is black, is dan-

gerous, has fur/hair, is large, is strong, beats its chest

• FLAMINGO : can fly, can stand on one leg, has a beak, has a long neck,

has feathers, has long legs, is pink, lives in water

• PEACOCK : has feathers, is colourful, has long tail feathers, is blue, is

noisy/loud, is beautiful, has a beak, is proud

• GOLDFISH : can swim, has fins, has scales, is orange, is small, lives in

aquariums, lives in water, lives in a bowl

• ANT : has legs, can bite, can crawl, is black, is red, is small, is strong,

lives in colonies



Appendix A. Additional details of the experiment 78

• SNAIL : has a shell, is slow, is slimy, is found in gardens, has eyes, leaves

a trail, has an antenna, is edible

• IGUANA : is green, is scaly, has a tail, has a tongue, has legs, can eat

insects, is big/large, lives in hot climates

• PIG : has a snout, is pink, has a curly tail, likes mud, is found on farms,

is fat, oinks, can be eaten as bacon

• BALLOON : can float, made of rubber, is colourful, requires helium, can

burst, is for parties, is round, requires air

• FLUTE : made of metal, is long, has holes, used by blowing air through,

is silver, produces music, used in orchestras, is thin

• NECKLACE : is worn around the neck, made of gold, made of pearls,

made of silver, is expensive, has a clasp, has a pendant, is for females

• MICROWAVE : is found in kitchens, can cook food, can heat, made of

metal, has a door/doors, is electric, is rectangular/square, is fast

• TAXI : is yellow, is black, made of metal, has a meter, used for trans-

portation, is expensive, used for passengers, has a sign

• CANDLE : has a wick, made of wax, provides light, produces heat,

melts, is scented, different shapes, is romantic

• BUCKET : has a handle/handles, made of metal, made of plastic, can

contain liquid, used for holding things,is circular/round, is found on

beaches, is used for gardening

• UMBRELLA : protects from the rain, has a handle/handles, is water-

tight/waterproof, is collapsible, keeps things dry, made of fabric/cloth

material, is carried, has spokes
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• DESK : made of wood, has legs, has drawers, is flat , found in offices ,

made of metal , is strong ,used for working on

A.2 Category Typicality

Category Overall High Medium Low
bucket 0.83 0.93 0.70 0.49
flute 0.83 0.92 0.69 0.53

microwave 0.84 0.94 0.70 0.50
candle 0.85 0.97 0.69 0.49
desk 0.81 0.90 0.70 0.53

peacock 0.87 0.98 0.71 0.48
iguana 0.83 0.94 0.69 0.47
gorilla 0.85 0.96 0.70 0.48

pig 0.84 0.94 0.72 0.53
balloon 0.87 0.98 0.72 0.49

flamingo 0.87 0.97 0.72 0.51
ant 0.83 0.94 0.67 0.49
taxi 0.85 0.95 0.70 0.50

necklace 0.85 0.95 0.73 0.51
snail 0.84 0.95 0.69 0.51

goldfish 0.87 0.98 0.71 0.51
lion 0.84 0.95 0.69 0.52

umbrella 0.85 0.95 0.70 0.51

TABLE A.1: Average Category typicality ratings
The output of the softmax layer of a pre-trained neural network has been used as a
proxy for category typicality/representativeness of an image. High denotes images

from the range 0.8-1 of category typicality. Medium and Low represent images
from the range 0.6-0.8 and 0.4-0.6 respectively.
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Appendix B

Additional Details: Part 1

Additional analysis of the data using different models. We present similar

results to our original analysis when we use the top 3 features, a reduced

data set and 3 Bins instead of Binary variables.

B.1 Top 3 Features

We repeated the analysis using the top 3 features, instead of the top 4 fea-

tures. The results follow a similar pattern as when the top 4 features are used.

Figures B.1 and B.2 show that the common cause model is better supported

by the data as compared to the independent and common-effect structure.

Figure B.3 shows the performance of the best-fit graph as compared to the

common-cause graph and Figure B.4 shows the out-degree of the dummy

variable in the best-fit graph.

B.2 Reduced Data Set

We constructed a reduced data-set where negative examples were from the

appropriate group, i.e. data for animal categories consists of positive ex-

amples of the particular animal and negative examples of only animals. To
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FIGURE B.1: Bayes Factor (Common Cause/Independent) - Top
3 features

FIGURE B.2: Bayes Factor (Common Cause/Common Effect) -
Top 3 features
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FIGURE B.3: Bayes Factor (Best-Fit/Common Cause) - Top 3
features

FIGURE B.4: Out-degree of Dummy Variable - Top 3 features
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FIGURE B.5: Bayes Factor (Common Cause/Independent) - Re-
duced Data set

ensure that our data was not skewed towards positive examples (since we

are reducing the negative examples), we reduce the positive examples from

120 to 80 using random sampling.

We used all 8 features in our analysis. We find that the common-cause struc-

ture is strongly supported by the data as compared to the independent model,

which is consistent with our initial analysis. (Figure B.5)

We also find that the common cause model is not much worse that the best-

fit model (Figure B.6). The best-fit model was learnt using a 3 parent node

restriction instead of the 4 parent node restriction because the size of our

data set is smaller. The common-cause model also fits the data better than

the best-fit-independent model (Figure B.7). Both these results are consistent

with our original analysis.
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FIGURE B.6: Bayes Factor (Best Fit/Common Cause) - Reduced
Data set

FIGURE B.7: Bayes Factor (Common Cause/Best-Fit-
Independent) - Reduced Data set
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FIGURE B.8: Bayes Factor (Common-Cause/Independent) - 3
Bins

B.3 3 Bins

In Chapter 3 our analysis uses binary variables. However, to ensure that

using 2 bins (binary variables) was not losing information, we repeated a

part of the analysis using 3 bins. We find that the results are consistent with

our original analysis. The common cause model is better supported than the

independent model (Figure B.8) and the best-fit-independent model (Figure

B.10). Further, the common cause model is not much worse than the best-fit

model (Figure B.9). The best-fit-independent and best-fit models were learnt

using a three parent node restriction. All 8 features were used.
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FIGURE B.9: Bayes Factor (Best Fit/Common Cause)- 3 Bins

FIGURE B.10: Bayes Factor (Common Cause/Best-Fit-
Independent)- 3 Bins
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B.4 Marginal Likelihood

In Chapter 3, we compare the common-cause model with the best-fit-independent

model by comparing their likelihoods. We also calculated the ratio of the

marginal likelihood of the two graphs by marginalizing the dummy variable.

FIGURE B.11: Ratio of Marginal Likelihood (Common
Cause/Best-Fit-Independent)
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B.5 Latent Causes

We used the RFCI algorithm to calculate the directed acyclic graph in the

presence of hidden variables. Pairs of features which share a latent cause

have been shown in Tables B.1 and B.2. Results indicate that there are fea-

ture pairs in both essential and non-essential categories which share a latent

cause.

category features
ant can.crawl,is.small,10

can.crawl,is.strong,11
has.legs,is.strong,6
has.legs,lives.in.colonies,3
is.black,is.red,8
is.black,is.small,10
is.black,lives.in.colonies,14
is.small,lives.in.colonies,5

flamingo
goldfish can.swim,has.scales,6
iguana is.scaly,lives.in.hot.climates,15
gorilla is.black,is.dangerous,15
lion has.teeth,lives.in.jungles,6
peacock
pig is.found.on.farms,likes.mud,3
snail has.a.shell,leaves.a.trail,3

is.edible,is.slimy,12
is.slimy,leaves.a.trail,4

TABLE B.1: Feature pairs which share a latent cause - Animals
The number along with each feature pair is the number of causal structures (out of

20) in which the pair shared a common cause.
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category features
balloon can.burst,requires.helium,11

made.of.rubber,requires.helium,13
bucket has.a.handle.handles,made.of.plastic,9

is.circular.round,is.found.on.beaches,6
is.circular.round,used.for.holding.things,12
is.found.on.beaches,is.used.for.gardening,6
made.of.metal,made.of.plastic,13
made.of.plastic,used.for.holding.things,15

candle is.romantic,is.scented,10
is.romantic,provides.light,6

desk has.legs,is.strong,5
is.strong,used.for.working.on,5

flute has.holes,is.long,20
microwave has.a.door.doors,is.rectangular.square,14

is.found.in.kitchens,is.rectangular.square,5
necklace is.expensive,made.of.gold,10
taxi
umbrella has.a.handle.handles,keeps.things.dry,15

is.carried,is.watertight.waterproof,8

TABLE B.2: Feature pairs which share a latent cause - Artefacts
The number along with each feature pair is the number of causal structures (out of

20) in which the pair shared a common cause.

B.6 Correlation between features

Figures B.11 to B.28 show the individual heat maps of correlation between

features for each category.

FIGURE B.12: Correlation - ANT
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FIGURE B.13: Correlation - FLAMINGO

FIGURE B.14: Correlation - GOLDFISH
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FIGURE B.15: Correlation - IGUANA

FIGURE B.16: Correlation - GORILLA
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FIGURE B.17: Correlation - LION

FIGURE B.18: Correlation - SNAIL
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FIGURE B.19: Correlation - PIG

FIGURE B.20: Correlation - PEACOCK
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FIGURE B.21: Correlation - BALLOON

FIGURE B.22: Correlation - BUCKET
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FIGURE B.23: Correlation - CANDLE

FIGURE B.24: Correlation - DESK
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FIGURE B.25: Correlation - FLUTE

FIGURE B.26: Correlation - MICROWAVE
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FIGURE B.27: Correlation - TAXI

FIGURE B.28: Correlation - NECKLACE



Appendix B. Additional Details: Part 1 98

FIGURE B.29: Correlation - UMBRELLA
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Appendix C

Additional Details: Part2

C.1 Variation of Generic Speech with Age

Adult Speech

Figures C.1 to C.5 highlight how the percentage of genericity within each

category varies in adult speech as a function of the age of the child. Percent-

age of generic statements in the artifact category is higher than percentage

of generic statements in the animal category for all age groups (although the

differences are small).

Child Speech

The figures C.6 to C.9 highlight how the percentage of genericity within each

category varies in child speech with age. Percentage of generic statements in

the animal category is higher than the artifact category till the age of 4.
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FIGURE C.1: Percentage Genericity in each category: Adult
Speech

Age of the child: Less than 2 years. Each bar is calculated as the number of generic
statements/total number of statements. The number above each bar is the number
of generic statements from the particular category.



Appendix C. Additional Details: Part2 101

FIGURE C.2: Percentage Genericity in each category: Adult
Speech

Age of the child: 2-3 years. Each bar is calculated as the number of generic state-
ments/total number of statements.
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FIGURE C.3: Percentage Genericity in each category: Adult
Speech

Age of the child: 3-4 years. Each bar is calculated as the number of generic state-
ments/total number of statements.
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FIGURE C.4: Percentage Genericity in each category: Adult
Speech

Age of the child: 4-5 years. Each bar is calculated as the number of generic state-
ments/total number of statements.
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FIGURE C.5: Percentage Genericity in each category: Adult
Speech

Age of the child: Over 5 years. Each bar is calculated as the number of generic
statements/total number of statements.
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FIGURE C.6: Percentage Genericity in each category: Child
Speech

Age of the child: 2-3 years. Each bar is calculated as the number of generic state-
ments/total number of statements.
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FIGURE C.7: Percentage Genericity in each category: Child
Speech

Age of the child: 3-4 years. Each bar is calculated as the number of generic state-
ments/total number of statements.
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FIGURE C.8: Percentage Genericity in each category: Child
Speech

Age of the child: 4-5 years. Each bar is calculated as the number of generic state-
ments/total number of statements.
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FIGURE C.9: Percentage Genericity in each category: Child
Speech

Age of the child: Over 5 years. Each bar is calculated as the number of generic
statements/total number of statements.
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C.2 List of corpora (CHILDES)

• Brown

• Warren

• Forrester

• Demetras1

• MacWhinney

• Wells

• Demetras2

• Bloom70

• Peters

• Providence

• Sawyer

• Davis

• Braunwald

• Normal

• Soderstrom

• Belfast

• Snow

• Clark

• Higginson

• Feldman

• Morisset
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• Cornell

• MPI-EVA-Manchester

• Hall

• Suppes

• Thomas

• Kuczaj

• Sachs
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